Improving Infrared Reflectance of Greenhouse Films

Lilian Bacco Irgang
Hortitec
Our Discussion Today
UV Reflectant White Pigment for Agricultural Film Applications

Altiris® Pigment - Crystal modified TiO2 with dense silica coating

- High IR reflectance
- Super durable coating designed for prolonged exterior use
Agricultural Film Applications – Examples

The market for multi-layer barrier films in agricultural applications is constantly increasing! Popular applications include:

▶ **Greenhouse and Tunnel films**
 – Provide condensate control, reduced nighttime heat loss (IR), reduced daytime heat gain, controlled light diffusion and optimized UV Light transmission

▶ **Silage films (both stretch film & silo film)**
 – Reduced oxygen transmission rate (OTR) increases quality of stored silage. **Controlled heat accumulation**

▶ **Mulch films**
 – Used to modify soil **temperature**, limit weed growth, prevent moisture loss, reduce fumigant evaporation rate
Greenhouses provide benefits

- Greenhouses provide a safe and controlled environment for plants to grow
 - Moisture levels can be regulated to ensure the plants can still transpire
 - Pest levels can be monitored and controlled
 - Crops are protected from adverse weather conditions

- UV, visible and infrared light is still able to pass through the film to the plants inside
 - UV light is required for insect pollination of flowers but is harmful to the plastic film
 - Visible light drives photosynthesis (see graph opposite)
 - Infrared energy in moderation enables optimum growth temperatures
...but problems can occur

Overheating
- If too much infrared energy passes through the film (ex. summer months, hot climates) the interior can become too hot and plants can suffer stress
- Stressed plants can wilt thereby reducing the surface area of their leaves which reduces their ability to absorb the energy they need from the sun’s visible light
- Enzymes each have an ideal temperature range, too cold or too hot and they lose efficiency or denature. Maximum plant enzyme efficiency means faster plant growth

Scorching
- Many plants need protection from direct sunlight either by shading or by diffusing the light passing through the film

Condensation
- Damp, still air promotes mold and mildew growth
There are many different types & grades of TiO2 available.
- TiO2 grades are surface coated to make them more stable outdoors.
- Untreated grades of TiO2 can actually accelerate the degradation of film outdoors

Choice of TiO2 grade based on a number of factors:
- Geographic location
- Plastic resin type & film thickness
- Additives: ultraviolet stabilizers, antioxidants, etc.

These variables make it almost impossible to produce one film for all climates, geographic regions, crops and service lifetimes!
Color - reflectance spectra of TiO$_2$

% reflectance

U.V. Visible Region I.R.

λ (nm)

300 400 500 600 700 800 900 1000 1500 2000 2500 3000

0 10 20 30 40 50 60 70 80 90 100

Rutile TiO$_2$

Anatase TiO$_2$
Sunlight is made up of three parts:

- **Ultraviolet (UV)**
 - Smallest part of the Sunlight spectrum
 - Causes film to break-down (photodegradation)
 - Organic and inorganic additives used to control plastic degradation

- **Visible (VIS)**
 - Less than 50% is the visible part we see
 - Causes heating of the polymer, leads to warping, micro cracking or embrittlement (thermal degradation)

- **Infrared (IR)**
 - Over half the sun’s power is in the infrared
 - **Invisible but adds to the heating problem**
Grey Ore to White Pigment
TiO2 Manufacture

Ilmenite or Rutile → FeTiO3 → TiO2

TiO2
A crystal is defined as the smallest unique particle of TiO$_2$. The crystal size and size distribution will determine the optical characteristics of the TiO$_2$ pigment.
ALTIRIS® pigment crystal size measurement

ALTIRIS® 800 TiO₂ pigment

ALTIRIS® 550 TiO₂ pigment

Pigmentary rutile TiO₂
ALTIRIS® infrared reflecting pigments
Engineered for maximum impact

- **Large titanium dioxide particle**
 - Optimised to reflect near infrared energy helping keep system cooler
 - Has low tint strength and therefore can be used to improve the infrared reflectance of colored systems unlike standard titanium dioxide

- **Dense silica shell**
 - Ensures that ALTIRIS® pigment has high durability

- **Alumina coating**
 - Facilitates excellent dispersion
ALTIRIS® pigment
Greenhouse films
ALTIRIS® pigment benefits

- ALTIRIS® 800 pigment reflects and absorbs UV light
 - UV light although helpful for insect pollination, can cause damage to polymer films if it is absorbed
 - ALTIRIS® 800 pigment can be used to reflect / absorb UV radiation, protecting the film

- A dense silica coating is applied to ALTIRIS® 800 pigment limiting photocatalysis to minimise mass loss from the polymer, thereby helping to enhance the product’s lifetime
ALTIRIS® pigment benefits

- A greenhouse film with added ALTIRIS® allows solar radiation to be ‘dimmed’ with minimal impact on the wavelength distribution.
 - The light reaching the plants looks like sunlight

- ALTIRIS® helps regulate the amount of infrared light from the sun entering the greenhouse
 - Greenhouses could be used all the year round for optimal crop yields

- Diffusing the sunlight (Vis & IR) helps reduce scorching
 - The high refractive index of ALTIRIS® promotes a high level of diffusion at relatively low concentrations
What happens to the light entering a greenhouse film when ALTIRIS® pigment is added?

0.5 phr ALTIRIS(R) 800

1.0 phr ALTIRIS(R) 800

5.0 phr ALTIRIS(R) 800

Key:
- Absorbance
- Direct Transmittance
- Diffuse Transmittance
- Reflectance
ALTIRIS® pigment
Two case studies in Turkey
Summer Greenhouse Overview

<table>
<thead>
<tr>
<th></th>
<th>Film contains ALTIRIS® 800 pigment</th>
<th>Film control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>280 m²</td>
<td>280 m²</td>
</tr>
<tr>
<td>Film used</td>
<td>400 m²</td>
<td>400 m²</td>
</tr>
<tr>
<td>Resin</td>
<td>Polyethylene</td>
<td>Polyethylene</td>
</tr>
<tr>
<td>Thickness</td>
<td>• 180 microns total (co-extrusion)</td>
<td>190 microns total</td>
</tr>
<tr>
<td></td>
<td>• 50 microns outer layer contains ALTIRIS®</td>
<td></td>
</tr>
<tr>
<td>ALTIRIS® loading</td>
<td>• Masterbatch 50% conc., 2% added to film</td>
<td>• Not-applicable</td>
</tr>
<tr>
<td></td>
<td>• 1% total in the 50 micron layer</td>
<td></td>
</tr>
<tr>
<td>Timescale</td>
<td>• July to November</td>
<td>• July to November</td>
</tr>
<tr>
<td></td>
<td>• 88 days data collected</td>
<td>• 88 days data collected</td>
</tr>
</tbody>
</table>

Location
![Location map](image)

![Greenhouse film with ALTIRIS® 800 pigment](image)

![Greenhouse film control](image)
Summer Greenhouse

Test results

<table>
<thead>
<tr>
<th></th>
<th>Film with ALTIRIS® 800 pigment</th>
<th>Film control (No Altiris® pigment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Film production</td>
<td>• No issues with film extrusion</td>
<td>• No issues with film extrusion</td>
</tr>
<tr>
<td>Tomato production</td>
<td>• Tomato size medium to large • Very uniform shape of tomatoes</td>
<td>• Tomato size small to medium • Shape of tomatoes not very uniform</td>
</tr>
<tr>
<td>UV light</td>
<td>• Approximately 32% UV transmission</td>
<td>• Approximately 90% UV transmission</td>
</tr>
<tr>
<td>Visible light</td>
<td>• Only 3% loss of photosynthetically active radiation (PAR) through the film compared to the control</td>
<td></td>
</tr>
<tr>
<td>Infrared light</td>
<td>• 6% less near infrared light has been transmitted through the greenhouse film than the control</td>
<td></td>
</tr>
<tr>
<td>Interior temperature</td>
<td>• 19 hours the temperature was >40°C (across July and August) • 139 hours the greenhouse was <6°C (across October and November)</td>
<td>• 64 hours the temperature was >40°C (across July and August) • 120 hours the greenhouse was <6°C (across October and November)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>• Did not reach 100% relative humidity (RH)</td>
<td>• Did not reach 100% relative humidity (RH)</td>
</tr>
</tbody>
</table>
Owner sought to minimize excursions above 40 °C

- Greenhouse built with control film was hotter at the peak times of the day than greenhouse built with ALTIRIS® pigment in the film
- Control greenhouse consistently peaked above 40 °C in August. The greenhouse containing ALTIRIS® pigment in the film did not
Photographs

Greenhouse film contains ALTIRIS® 800 pigment

Greenhouse film Control (No ALTIRIS® 800 pigment)
Photographs taken in the middle of the trial

Greenhouse film contains ALTIRIS® 800 pigment

Greenhouse film Control
Photographs at the end of trial

Greenhouse film contains ALTIRIS® 800 pigment

Greenhouse film Control
ALTIRIS® pigment
Diffuse + direct transmission measurements

When ALTIRIS® pigment is used in a greenhouse film, the film promotes a high level of diffusion.
ALTIRIS® pigment

Direct transmission measurements

Use of ALTIRIS® pigment in a greenhouse film promotes a high level of diffusion and therefore has low direct light transmission.

Graph shows 180 micron PE Films Cary Transmission Scans using DRA Sphere and comparisons are with TIOXIDE®TR60 pigment.
ALTIRIS® pigment

Reflectance measurements over black substrate

- Pure PE film
- 0.50 phr TIOXIDE® TR60 pigment
- 1.0 phr ALTIRIS® 800 pigment
- 2.0 phr ALTIRIS® 800 pigment
- 5.0 phr ALTIRIS® 800 pigment

Graph shows 180 micron PE Films Cary Transmission Scans using DRA Sphere and comparisons are with TIOXIDE®TR60 pigment.

Transparency is indicated by low visible reflectance over a black background.
Summary of Spectral Data

Use of ALTIRIS® TiO2 pigment in Greenhouse film:

- Allows the solar intensity to be dimmed within the Greenhouse.
 - Retaining the spectral distribution that plants have learned to thrive on

- Assists in blocking UV and extends film life

- Increases the diffuse component of visible transmission
 - Allows photosynthetically active radiation (PAR) to reach more leaf surfaces

- Increases the diffuse component of near infrared transmission
 - Diluting the heating effect on individual leaves
Thank you

This communication is a general guide to the products described in it. Information is updated regularly. For updates or more information, visit venatorcorp.com. Although given in good faith, accuracy or completeness of information is not guaranteed. Images used are only examples of possible applications using our products. NOTHING IN THIS COMMUNICATION IS (OR SHOULD BE TAKEN AS) A WARRANTY (EXPRESS OR IMPLIED). NO REPRESENTATION, ASSURANCE OR UNDERTAKING IS MADE. NO LIABILITY IS OR WILL BE ACCEPTED BY VENATOR IN RELATION TO THE ADEQUACY, ACCURACY, COMPLETENESS, REASONABILITY OF THIS COMMUNICATION. ALL AND ANY SUCH LIABILITY IS EXPRESSLY DISCLAIMED. IN ALL CASES IT IS YOUR RESPONSIBILITY TO DETERMINE THE APPLICABILITY OF THE INFORMATION AND RECOMMENDATIONS AND THE SUITABILITY OF THE PRODUCTS DESCRIBED FOR ANY PARTICULAR PURPOSE. Unless otherwise expressly stated in this document, Venator products must not be used, resold, distributed, transferred, or otherwise disposed of in (or in each case where intended to be used in) any applications or process in: a) which lead stabilisers/stabilised systems are used where the end product is rigid pvc; b) i) food ; c) cosmetics; d) pharmaceuticals; or e) medical. Nothing in this Communication or disclaimer limits claims in respect of death or personal injury caused by our negligence. This Communication is not: a) a license under any intellectual property right of any entity; or b) a recommendation or authorization to action that infringes any intellectual property right. Unless otherwise agreed in writing and signed by the parties, all sales are subject to the general terms and conditions of sale of Venator. Reference to Venator includes Venator Materials Corporation, its direct and indirect affiliates, and their employees, officers, agents and distributors. Reference to Communication includes this document and anything else made available to you (written or verbal) in connection with the subject matter of this document in any form or medium.

© Copyright 2018. Venator Materials Corporation. All rights reserved.