VENATOR

Improving Infrared Reflectance of Greenhouse Films Lilian Bacco Irgang Hortitec

Our Discussion Today

UV Reflectant White Pigment for Agricultural Film Applications VENATOR

Altiris® Pigment - Crystal modified TiO2 with dense silica coating

- ► High IR reflectance
- Super durable coating designed for prolonged exterior use

Agricultural Film Applications – Examples Temperature Control

The market for multi-layer barrier films in agricultural applications is constantly increasing! Popular applications include:

Greenhouse and Tunnel films

 Provide condensate control, reduced nighttime heat loss (IR), reduced daytime heat gain, controlled light diffusion and optimized UV Light transmission

Silage films (both stretch film & silo film)

Reduced oxygen transmission rate (OTR) increases quality of stored silage. Controlled heat accumulation

Mulch films

Used to modify soil temperature, limit weed growth, prevent moisture loss, reduce fumigant evaporation rate

Greenhouses provide benefits

VENATOR

- Greenhouses provide a safe and controlled environment for plants to grow
 - Moisture levels can be regulated to ensure the plants can still transpire
 - Pest levels can be monitored and controlled
 - Crops are protected from adverse weather conditions
- UV, visible and infrared light is still able to pass through the film to the plants inside
 - UV light is required for insect pollination of flowers but is harmful to the plastic film
 - Visible light drives photosynthesis (see graph opposite)
 - Infrared energy in moderation enables optimum growth temperatures

...but problems can occur

Overheating

- If too much infrared energy passes through the film (ex. summer months, hot climates) the interior can become too hot and plants can suffer stress
- Stressed plants can wilt thereby reducing the surface area of their leaves which reduces their ability to absorb the energy they need from the sun's visible light
- Enzymes each have an ideal temperature range, too cold or too hot and they lose efficiency or denature. Maximum plant enzyme efficiency means faster plant growth

Scorching

 Many plants need protection from direct sunlight either by shading or by diffusing the light passing through the film

Condensation

- Damp, still air promotes mold and mildew growth

Weatherable Films – Pigments

White Pigment (TiO2) Grade Choice

There are many different types & grades of TiO2 available.

- TiO2 grades are surface coated to make them more stable outdoors.
- Untreated grades of TiO2 can actually accelerate the degradation of film outdoors

Choice of TiO2 grade based on a number of factors:

- Geographic location
- Plastic resin type & film thickness
- Additives: ultraviolet stabilizers, antioxidants, etc.

These variables make it almost impossible to produce one film for all climates, geographic regions, crops and service lifetimes!

Color - reflectance spectra of TiO₂

7

ALTIRIS® infrared reflecting pigments

Managing reflectance to improve product durability

Solar Intensity

2

Sunlight is made up of three parts:

Ultraviolet (UV)

- Smallest part of the Sunlight spectrum
- Causes film to break-down (photodegradation)
- Organic and inorganic additives used to control plastic degradation
- Visible (VIS)
- Less than 50% is the visible part we see
- Causes heating of the polymer, leads to warping, micro cracking or embrittlement (thermal degradation)
- Infrared (IR)
- Over half the sun's power is in the infrared
- Invisible but adds to the heating problem

Wavelength (nm)

Grey Ore to White Pigment

TiO2 Manufacture

Ilmenite or Rutile

9

TiO2 Pigment design Crystal Size

\succ A crystal is defined as the smallest unique particle of TiO₂

The crystal size and size distribution will determine the optical characteristics of the TiO₂ pigment

ALTIRIS® pigment crystal size measurement VENATOR

ALTIRIS[®] 800 TiO2 pigment

ALTIRIS® 550 TIO2 pigment

ALTIRIS® infrared reflecting pigments

Engineered for maximum impact

VENATOR

ALTIRIS[®] pigment Greenhouse films

ALTIRIS® pigment benefits

VENATOR

ALTIRIS® 800 pigment reflects and absorbs UV light

- UV light although helpful for insect pollination, can cause damage to polymer films if it is absorbed
- ALTIRIS® 800 pigment can be used to reflect / absorb UV radiation, protecting the film
- A dense silica coating is applied to ALTIRIS® 800 pigment limiting photocatalysis to minimise mass loss from the polymer, thereby helping to enhance the product's lifetime

2000 hours Weathering Atlas Ci65a

- A greenhouse film with added ALTIRIS® allows solar radiation to be 'dimmed' with minimal impact on the wavelength distribution.
 - The light reaching the plants looks like sunlight
- ALTIRIS® helps regulate the amount of infrared light from the sun entering the greenhouse
 - Greenhouses could be used all the year round for optimal crop yields
- > Diffusing the sunlight (Vis & IR) helps reduce scorching
 - The high refractive index of ALTIRIS® promotes a high level of diffusion at relatively low concentrations

What happens to the light entering a greenhouse film when ALTIRIS® pigment is added?

0.5 phr ALTIRIS(R) 800

5.0 phr ALTIRIS(R) 800

1.0 phr ALTIRIS(R) 800

VENATOR

Key: Absorbance Direct Transmittance Diffuse Transmittance Reflectance

VENATOR

ALTIRIS[®] pigment Two case studies in Turkey

Summer Greenhouse

Overview

	Film contains ALTIRIS® 800 pigment	Film control
Size	280 m ²	280 m ²
Film used	400 m ²	400 m ²
Resin	Polyethylene	Polyethylene
Thickness	 180 microns total (co-extrusion) 50 microns outer layer contains ALTIRIS® 	190 microns total
ALTIRIS [®] loading	 Masterbatch 50% conc., 2% added to film 1% total in the 50 micron layer 	Not-applicable
Timescale	July to November88 days data collected	July to November88 days data collected

Location

Greenhouse film with ALTIRIS® 800 pigment

Greenhouse film control

Summer Greenhouse

Test results

	Film with ALTIRIS® 800 pigment	Film control (No Altiris® pigment
Film production	No issues with film extrusion	No issues with film extrusion
Tomato production	Tomato size medium to largeVery uniform shape of tomatoes	Tomato size small to mediumShape of tomatoes not very uniform
UV light	Approximately 32% UV transmission	Approximately 90% UV transmission
Visible light	 Only 3% loss of photosynthetically active radiation (PAR) through the film compared to the control 	
Infrared light	 6% less near infrared light has been transmitted through the greenhouse film than the control 	
Interior temperature	 19 hours the temperature was >40 ℃ (across July and August) 139 hours the greenhouse was <6 ℃ (across October and November) 	 64 hours the temperature was >40 °C (across July and August) 120 hours the greenhouse was <6 °C (across October and November)
Relative humidity	 Did not reach 100% relative humidity (RH) 	Did not reach 100% relative humidity (RH)

Summer Greenhouse

Interior greenhouse temperature comparison

- ➤ Owner sought to minimize excursions above 40 °C
 - Greenhouse built with control film was hotter at the peak times of the day than greenhouse built with ALTIRIS[®] pigment in the film
 - Control greenhouse consistently peaked above 40 °C in August. The greenhouse containing ALTIRIS[®] pigment in the film did not

Photographs

Greenhouse film contains ALTIRIS® 800 pigment Greenhouse film Control (No ALTIRIS® 800 pigment)

Photographs taken in the middle of the trial VENATOR

Greenhouse film contains ALTIRIS® 800 pigment

Greenhouse film Control

Photographs at the end of trial

Greenhouse film contains ALTIRIS® 800 pigment

Greenhouse film Control

ALTIRIS® pigment

Diffuse + direct transmission measurements

When ALTIRIS® pigment is used in a greenhouse film, the film promotes a high level of diffusion

Graph shows 180 micron PE Films Cary Transmission Scans using DRA Sphere and ccomparisons are with TIOXIDE®TR60 pigment

ALTIRIS® pigment

Direct transmission measurements

Use of ALTIRIS® pigment in a greenhouse film promotes a high level of diffusion and therefore has low direct light transmission

ALTIRIS® pigment

Reflectance measurements over black substrate

Graph shows 180 micron PE Films Cary Transmission Scans using DRA Sphere and ccomparisons are with TIOXIDE®TR60 pigment

Use of ALTIRIS® TiO2 pigment in Greenhouse film:

Allows the solar intensity to be dimmed within the Greenhouse.

> Retaining the spectral distribution that plants have learned to thrive on

Assists in blocking UV and extends film life

Increases the diffuse component of visible transmission

> Allows photosynthetically active radiation (PAR) to reach more leaf surfaces

Increases the diffuse component of near infrared transmission

> Diluting the heating effect on individual leaves

VENATOR

Thank you

inkedin.com/company/venator-corp

This communication is a general guide to the products described in it. Information is updated regularly. For updates or more information, visit venatorcorp.com. Although given in good faith, accuracy or completeness of information is not guaranteed. Images used are only examples of possible applications using our products. NOTHING IN THIS COMMUNICATION IS (OR SHOULD BE TAKEN AS) A WARRANTY (EXPRESS OR IMPLIED). NO REPRESENTATION, ASSURANCE OR UNDERTAKING IS MADE. NO LIABILITY IS OR WILL BE ACCEPTED BY VENATOR IN RELATION TO THE ADEQUACY, ACCURACY, COMPLETENESS, REASONABLENESS OF THIS COMMUNICATION. ALL AND ANY SUCH LIABILITY IS EXPRESSLY DISCLAIMED. IN ALL CASES IT IS YOUR RESPONSIBILITY TO DETERMINE THE APPLICABILITY OF THE INFORMATION AND RECOMMENDATIONS AND THE SUITABILITY OF THE PRODUCTS DESCRIBED FOR ANY PARTICULARPURPOSE. Unless otherwise expressly stated in this document, Venator products must not be used, resold, distributed, transferred, or otherwise disposed of in (or in each case where intended to be used in) any applications or process in: a) which lead stabilisers/stabilised systems are used where the end product is rigid pvc; b) i) food ; c) cosmetics; d) pharmaceuticals; or e) medical. Nothing in this Communication or disclaimer limits claims in respect of death or personal injury caused by our negligence. This Communication is not: a) a license under any intellectual property right of any entity; or b) a recommendation or authorization to action that infringes any intellectual property right. Unless otherwise agreed in writing and signed by the parties, all sales are subject to the general terms and conditions of sale of Venator. Reference to Venator includes Venator Materials Corporation, its direct and indirect affiliates, and their employees, officers, agents and distributors. Reference to Communication includes this document and anything else made available to you (written or verbal) in connection with the subject matter of this document in any form or medium.

© Copyright 2018. Venator Materials Corporation. All rights reserved.